Skip to main content

Securing HSRP


In previous post I went over attacking HSRP using default authentication of "cisco". In this post I'll go over defenses.

HSRP attacks are performed at Layer 2 so the attacker must be on the same L2 domain (same VLAN/subnet). Probably this is the reason no one pays much attention to it. "It's our LAN, it's behind firewall so it's safe. Right?" Maybe, but there are bored employees, there are misconfigurations, and there could be malware that would mess up your network.

Either way, if it can be more secure it should be. That's what "defense-in-depth" is all about.

HSRP supports authentication. Either a plain-text or md5 ca be used. Plain text option provides little to no protection as the plain text password is sent in clear text with every HSRP packet. MD5 authentication solves the problem. It uses a secret key to generate a keyed MD5 hash of the packet that is part of the outgoing packet. A keyed hash of an incoming packet is generated and if the generated hash does not match the hash within the incoming packet, the packet is ignored.

To enable MD5 authentication the following command is used in the interface configuration context:


R1(config-if) #standby authentication md5 key-string "the key"



HSRP packet with default authentication:


HSRP packet with md5 authentication enabled:


Comments

Popular posts from this blog

x.509 Certificates - Critical vs non-critical extensions

Extensions are used to associate additional information with the user or the key.  Each certificate extension has three attributes - extnID, critical, extnValue extnID - Extension ID - an OID that specifies the format and definitions of the extension critical - Critical flag - Boolean value extnValue - Extension value  Criticality flag specifies whether the information in an extension is important. If an application doesn't recognize the extension marked as critical, the certificate cannot be accepted. If an extension is not marked as critical (critical value False) it can be ignored by an application. In Windows, critical extensions are marked with a yellow exclamation mark,  View certificate extensions using OpenSSL: # openssl x509 -inform pem -in cert.pem -text -noout (output abbreviated)         X509v3 extensions:             X509v3 Key Usage: critical                 Digital Signature, Key Encipherment             X509v3 Subject Key Identifier

Cisco ASA Certificate Revocation Checking

ASA supports status verification using CRLs and OCSP. CRL can be retrieved using HTTP, LDAP or SCEP. Revocation checking using CRL: Over HTTP: ciscoasa(config)# crypto ca trustpoint ASDM_TrustPoint2 ciscoasa(config-ca-trustpoint)# revocation-check crl ciscoasa(config-ca-crl)# protocol http By default ASA will use address listed in CDP extension of the certificate that is being validated.  To override default behaviour we need to add the following in the CRL configuration context. ciscoasa(config-ca-crl)# policy static ciscoasa(config-ca-crl)# url 1 http://cdpurl.kp.local/crl.crl Over LDAP: Certificate I'm using for this lab, doesn't have LDAP address in its CDP extension. Therefore I'm using "policy static"  to specify LDAP URL where CRL can be retrieved.  ciscoasa(config)# crypto ca trustpoint ASDM_TrustPoint2 ciscoasa(config-ca-trustpoint)# revocation-check crl ciscoasa(config-ca-trustpoint)# crl configure ciscoasa

Count number of lines - 'findstr'

How do I count number of lines in a command output? findstr /r/n "^" | find /c ":" Above commands will display number of lines output by whatever command (well, nearly whatever) you specify in the front.  For example:  C:\>ping localhost | findstr /r/n "^" | find /c ":" FINDSTR: // ignored 12 This comes handy if you want to find out how many OUs you have in Active Directory: dsquery ou  -limit 0 | findstr /r/n "^" | find /c ":" How many user accounts there are: dsquery user -limit 0 | findstr /r/n "^" | find /c ":" Computers: dsquery computer -limit | findstr /r/n "^" | find /c ":"